Following our last expedition of Turing Machine, let us now see it apply to DNA computing. The information in the DNA is represented using the four-character genetic alphabet- A [adenine], G [guanine], C [cytosine], and T [thymine]. These four are known as bases and are linked through deoxyribose. This connection between the bases follows a direction such that the lock-and-key principle is achieved - (A)(T) and (C)(G) This means Adenine (A) pairs with Thymine (T), and Cytosine (C) pairs with Guanine (G). These bases make DNA a computational medium. Drawing the analogy from traditional computers to DNA computing, we see that while the former process formation sequentially, DNA computing allows for parallelism, the ability to perform many computations simultaneously by leveraging the vast number of DNA molecules. This significantly speeds up the process. DNA computing uses biochemical reactions and DNA molecules instead of silicon-based computing like conven...